1.55% carbon fiber reinforcement content
2.400MPa tensile strength performance
3.260°C heat deflection temperature
4.450MPa flexural strength capacity
5.8x wear resistance improvement
CF Nylon Alloy Compounds PA6&PA66 CF55 is a high-performance nylon alloy composite pellet material, utilizing a specialized blend of nylon 6 and nylon 66 matrix with 55% high-modulus carbon fiber reinforcement. This innovative CF Nylon Alloy Compounds technology perfectly combines the excellent toughness of nylon 6, the heat resistance of nylon 66, and the high-strength characteristics of carbon fiber, providing an ideal engineering material solution for precision injection molding.
1: Ultra-High Mechanical Strength Tensile strength reaches 400 MPa, flexural strength 450 MPa, and impact strength 25 kJ/m². The mechanical properties of PA6&PA66 CF55 are 300% higher than unreinforced nylon, significantly outperforming ordinary engineering plastics.
2: Exceptional Heat Resistance Heat deflection temperature (1.82 MPa) reaches 260°C, with a continuous service temperature of 180°C. CF Nylon Alloy Compounds maintain over 90% of mechanical properties in high-temperature environments, with a thermal expansion coefficient as low as 1.8×10⁻⁵/°C.
3: Excellent Wear Resistance The friction coefficient is only 0.15-0.18, and wear volume is 1/8 that of pure nylon. PA6&PA66 CF55 is particularly suitable for high-speed moving parts, extending service life by more than 4 times.
Widely used in aerospace components, high-end automotive parts, precision mechanical gears, industrial robot joints, electronic semiconductor equipment, and other high-tech fields, especially suitable for applications requiring extremely high strength, temperature resistance, and dimensional stability.
In industrial robot reducer gear applications, PA6&PA66 CF55 replaces traditional metal materials. Actual data shows: parts weight reduced by 55%, operating noise reduced by 18 dB, and service life increased by 300%. This CF Nylon Alloy Compounds solution not only achieves lightweight and noise reduction goals but also significantly improves transmission precision and reliability, making it the preferred material for high-end intelligent manufacturing equipment.
Conductors < 10⁵ Ω/sq. Antistatic Materials 10⁵ ~ 10¹² Ω/sq. Insulators > 10¹² Ω/sq. Static-Dissipative 10⁶ ~ 10¹¹ Ω/sq. *Key Influencing Factors Humidity: Increased moisture can reduce resistivity (e.g., in polymers). Temperature: Affects carrier mobility (↑ heat may lower semiconductor resistivity). Surface Contamination: Dust/oils alter readings significantly. Additives: Carbon black, metallic fillers can lower resistivity. *Applications Electronics: Antistatic materials (10⁶–10⁹ Ω/sq) prevent electrostatic discharge (ESD). Aerospace: Composites must control resistivity to avoid charge buildup. Medical Devices: Insulating materials (>10¹² Ω/sq) ensure patient safety. *Examples Polypropylene (PP): ~10¹⁶ Ω/sq (excellent insulator). Carbon Fiber Composites: 10³–10⁶ Ω/sq (static dissipation). ESD Flooring: 10⁶–10⁹ Ω/sq.
The table presents key performance data of carbon fiber grades. T300, with a tensile strength of 3530 MPa and a tensile modulus of 230 GPa, has a relatively low tensile elongation at break of 1.5% and a body density of 1.76 g/cm³. As the grade increases, for example, T700S shows an enhanced tensile strength of 4900 MPa compared to T300, while maintaining the same tensile modulus but with a higher elongation at break of 2.1%. T800S and T1000G both have a tensile modulus of 294 GPa, and their tensile strengths are 5880 MPa and 6370 MPa respectively. T1100G stands out with the highest tensile strength of 7000 MPa and a tensile modulus of 324 GPa. Generally, with the increase in product grade, the tensile strength and modulus tend to rise, while the density remains relatively stable around 1.8 g/cm³.
If you want to obtain information such as product specifications, performance, and price, choose a suitable product according to your own needs. Meanwhile, you can ask the manufacturer to provide samples for testing to ensure that the material meets your usage requirements. If you are interested in purchasing this composite material, please contact the manufacturer Carbon (Xiamen) New Material directly.
Carbon (Xiamen) New Material Co., Ltd. aims to provide buyers with "one-stop" worry-free high-quality services. Here you can find all information about carbon fiber engineering plastics. If you still have questions, please send us an email for consultation!
How can I contact the manufacturer of a product that interests me?
When you find a product you are interested in, you can contact the manufacturer directly by sending an email and we will get back to you as soon as possible.
How do I find the products that interest me?
All you need to do is enter the keyword, product name in the search window and press the Enter key on your keyboard. Your search results page will then be displayed. You can also search within the product category pages on the home page. Each category is divided into subcategories, allowing you to refine your search and find products that interest you.
Where will I find a buying guide?
Please contact our after-sales service directly and we will provide you with a comprehensive operating guide.
What are CF Reinforced Thermoplastic Composites?
CF Reinforced Thermoplastic Composites are materials where carbon fibers are incorporated into a thermoplastic matrix. They combine the strength and stiffness of carbon fibers with the processability and recyclability of thermoplastics. For instance, they are used in automotive parts like bumper beams.
What are the benefits of CF Reinforced Thermoplastic Composites over traditional composites?
The key benefits include faster production cycles, easier recyclability, and better impact resistance. They also offer design flexibility. An example is in the manufacturing of consumer electronics casings where complex shapes can be achieved more easily.
How are CF Reinforced Thermoplastic Composites processed?
Common processing methods include injection molding, extrusion, and compression molding. Injection molding is widely used for mass production. For example, in the production of small components for the medical industry.
What industries use CF Reinforced Thermoplastic Composites?
They are utilized in aerospace, automotive, medical, and sports equipment industries. In aerospace, they can be found in interior components. In the medical field, they might be used in prosthetics.
How does the carbon fiber content affect the properties of the composites?
Higher carbon fiber content generally leads to increased strength and stiffness but may reduce ductility. A moderate content is often balanced for specific applications. For example, a higher content might be preferred in structural parts of a race car.
What are the challenges in using CF Reinforced Thermoplastic Composites?
Challenges include higher material costs, complex processing equipment requirements, and ensuring uniform fiber dispersion. Issues with adhesion between the fibers and the matrix can also arise. An example is in achieving consistent quality in large-scale production.