1: Friction coefficient below 0.15.
2: Tensile strength reaches 195 MPa.
3: Flexural modulus exceeds 11 GPa.
4: Wear resistance improved by 80%.
5: Weight reduction up to 65%.
Plastic Replacing Metal Gears ideal solution utilizes PA6&PA66 CF30 Injection Grade, composed of nylon 6/66 alloy matrix, 30% carbon fiber, and self-lubricating additives. This specialized composite material not only achieves lightweight replacement of metal gears but also provides excellent wear resistance and self-lubricating properties, offering an efficient Plastic Replacing Metal Gears solution for gear transmission systems.
1. Excellent Self-Lubricating Properties
PA6&PA66 CF30 Injection Grade exhibits a friction coefficient below 0.15, enabling long-term stable operation without external lubrication.
2. High Mechanical Strength and Rigidity
Tensile strength reaches 195 MPa with flexural modulus exceeding 11 GPa, fully meeting gear transmission mechanical requirements.
3. Superior Wear Resistance
This Plastic Replacing Metal Gears material reduces wear rate by 80% compared to unreinforced nylon, significantly extending service life.
4. Good Fatigue Resistance
PA6&PA66 CF30 Injection Grade maintains dimensional stability under cyclic loading, suitable for high-speed gear applications.
This material is specifically designed to replace metal gears, widely used in automotive transmission gears, industrial machinery drive gears, power tool gear systems, office equipment transmission components, and precision instrument gearboxes.
An automotive components manufacturer used PA6&PA66 CF30 Injection Grade to produce power window regulator gears, successfully replacing traditional brass gears. This Plastic Replacing Metal Gears product reduces weight by 65% while maintaining equivalent transmission accuracy, lowers operating noise by 12 dB, and completely eliminates lubrication maintenance requirements, significantly improving product reliability and user experience.
For detailed technical data sheets, quotations, or further technical clarification, please feel free to contact us. Please note that the properties of carbon fiber-reinforced thermoplastic composites may vary depending on the matrix resin type, carbon fiber content and specifications, and manufacturing processes. The advantages of a specific material should be accurately evaluated through comparative testing with actual application requirements and other specific carbon fiber-reinforced plastics. Furthermore, products from different suppliers may have varying performance emphases.
Conductors < 10⁵ Ω/sq. Antistatic Materials 10⁵ ~ 10¹² Ω/sq. Insulators > 10¹² Ω/sq. Static-Dissipative 10⁶ ~ 10¹¹ Ω/sq. *Key Influencing Factors Humidity: Increased moisture can reduce resistivity (e.g., in polymers). Temperature: Affects carrier mobility (↑ heat may lower semiconductor resistivity). Surface Contamination: Dust/oils alter readings significantly. Additives: Carbon black, metallic fillers can lower resistivity. *Applications Electronics: Antistatic materials (10⁶–10⁹ Ω/sq) prevent electrostatic discharge (ESD). Aerospace: Composites must control resistivity to avoid charge buildup. Medical Devices: Insulating materials (>10¹² Ω/sq) ensure patient safety. *Examples Polypropylene (PP): ~10¹⁶ Ω/sq (excellent insulator). Carbon Fiber Composites: 10³–10⁶ Ω/sq (static dissipation). ESD Flooring: 10⁶–10⁹ Ω/sq.
The table presents key performance data of carbon fiber grades. T300, with a tensile strength of 3530 MPa and a tensile modulus of 230 GPa, has a relatively low tensile elongation at break of 1.5% and a body density of 1.76 g/cm³. As the grade increases, for example, T700S shows an enhanced tensile strength of 4900 MPa compared to T300, while maintaining the same tensile modulus but with a higher elongation at break of 2.1%. T800S and T1000G both have a tensile modulus of 294 GPa, and their tensile strengths are 5880 MPa and 6370 MPa respectively. T1100G stands out with the highest tensile strength of 7000 MPa and a tensile modulus of 324 GPa. Generally, with the increase in product grade, the tensile strength and modulus tend to rise, while the density remains relatively stable around 1.8 g/cm³.
If you want to obtain information such as product specifications, performance, and price, choose a suitable product according to your own needs. Meanwhile, you can ask the manufacturer to provide samples for testing to ensure that the material meets your usage requirements. If you are interested in purchasing this composite material, please contact the manufacturer Carbon (Xiamen) New Material directly.
Carbon (Xiamen) New Material Co., Ltd. aims to provide buyers with "one-stop" worry-free high-quality services. Here you can find all information about carbon fiber engineering plastics. If you still have questions, please send us an email for consultation!
How can I contact the manufacturer of a product that interests me?
When you find a product you are interested in, you can contact the manufacturer directly by sending an email and we will get back to you as soon as possible.
How do I find the products that interest me?
All you need to do is enter the keyword, product name in the search window and press the Enter key on your keyboard. Your search results page will then be displayed. You can also search within the product category pages on the home page. Each category is divided into subcategories, allowing you to refine your search and find products that interest you.
Where will I find a buying guide?
Please contact our after-sales service directly and we will provide you with a comprehensive operating guide.
What are CF Reinforced Thermoplastic Composites?
CF Reinforced Thermoplastic Composites are materials where carbon fibers are incorporated into a thermoplastic matrix. They combine the strength and stiffness of carbon fibers with the processability and recyclability of thermoplastics. For instance, they are used in automotive parts like bumper beams.
What are the benefits of CF Reinforced Thermoplastic Composites over traditional composites?
The key benefits include faster production cycles, easier recyclability, and better impact resistance. They also offer design flexibility. An example is in the manufacturing of consumer electronics casings where complex shapes can be achieved more easily.
How are CF Reinforced Thermoplastic Composites processed?
Common processing methods include injection molding, extrusion, and compression molding. Injection molding is widely used for mass production. For example, in the production of small components for the medical industry.
What industries use CF Reinforced Thermoplastic Composites?
They are utilized in aerospace, automotive, medical, and sports equipment industries. In aerospace, they can be found in interior components. In the medical field, they might be used in prosthetics.
How does the carbon fiber content affect the properties of the composites?
Higher carbon fiber content generally leads to increased strength and stiffness but may reduce ductility. A moderate content is often balanced for specific applications. For example, a higher content might be preferred in structural parts of a race car.
What are the challenges in using CF Reinforced Thermoplastic Composites?
Challenges include higher material costs, complex processing equipment requirements, and ensuring uniform fiber dispersion. Issues with adhesion between the fibers and the matrix can also arise. An example is in achieving consistent quality in large-scale production.