Carbon (Xiamen) New Material Co., Ltd. is committed to offering a series of customized services of carbon fiber composite materials, focusing on carbon fiber modified materials such as reinforcement, conductivity, anti-static, etc. to meet your various application demands. Main matrix resins: PA6, PA66, PA12, PPA, TPU, PPS, PEEK, PC, PP, ABS, PBT, PEI and PEEK, etc.
Crafted through advanced manufacturing processes, our plastics seamlessly integrate the strength and lightweight properties of carbon fiber with the versatility of engineering plastics, delivering unparalleled performance in demanding applications.
Our carbon fiber-modified plastics boast exceptional strength-to-weight ratios, making them ideal for applications where weight reduction and structural integrity are paramount. Whether used in automotive components, aerospace structures, sporting goods, or industrial machinery, our materials offer unmatched strength, stiffness, and impact resistance, ensuring reliable performance even in the most challenging environments.
Backed by rigorous testing and quality assurance protocols, our carbon fiber-modified engineering plastics stand as a testament to innovation and excellence, empowering industries to push the boundaries of what's possible. Explore the possibilities with our range of advanced materials and experience the difference in performance and reliability firsthand.
PPS-LCF60 is a top tier thermoplastic reinforced with 60% long carbon fiber, offering extreme stiffness (~26 GPa), high tensile strength (≥ 240 MPa), and exceptional thermal stability (up to 260 °C). Designed for metal replacement in the harshest environments, it excels in aerospace, automotive, industrial, and electronic structural applications.
Learn MorePPS-LCF50 is a high performance thermoplastic reinforced with 50% long carbon fiber, delivering exceptional strength (≥ 220 MPa), stiffness (~22 GPa), and thermal stability up to 250 °C. Ideal for metal replacement, it excels in structural, high load, and chemically harsh environments across automotive, aerospace, and industrial applications.
Learn MorePPS-LCF40 is a high performance thermoplastic reinforced with 40% long carbon fiber, delivering exceptional stiffness, tensile strength (≥ 200 MPa), and thermal stability up to 240 °C. Ideal for metal replacement in high load, high temperature, and chemically aggressive environments, it excels in automotive, aerospace, and industrial structural applications.
Learn MorePPS-LCF30 is a high performance thermoplastic reinforced with 30% long carbon fiber, offering exceptional stiffness, tensile strength, and dimensional stability. It performs reliably in high load, high temperature (up to 230 °C), and chemically aggressive environments, making it ideal for metal replacement in automotive, aerospace, and industrial applications.
Learn MorePPS-LCF20 is a high-performance thermoplastic reinforced with 20% long carbon fiber, offering superior stiffness, tensile strength, and fatigue resistance compared to lower fiber grades. It maintains excellent dimensional stability, thermal resistance (up to 220 °C), and chemical durability in demanding environments, making it ideal for structural components in automotive, aerospace, and…
Learn More1. 30% stronger with carbon fiber reinforcement 2. Withstands 260°C without degradation 3. Self-extinguishing (UL94 VO certified) 4. 0.3% water uptake for dimensional stability
Learn MorePPS-LCF10 is a high performance thermoplastic reinforced with 10% long carbon fiber, offering enhanced strength, stiffness, and fatigue resistance compared to short fiber grades. It maintains excellent thermal stability (up to 200 °C) and chemical resistance in harsh environments, making it ideal for lightweight structural parts in automotive, aerospace, and industrial…
Learn MorePPS-CF60 is a high performance thermoplastic reinforced with 60% carbon fiber, offering exceptional stiffness, strength, and dimensional stability. Designed for extreme environments, it withstands continuous use up to 250 °C, resists aggressive chemicals, and replaces metal in structural, high load, and high temperature applications. Ideal for aerospace, automotive, and industrial components…
Learn More1. 300MPa Tensile Strength -Rivals aerospace alloys 2. 95kJ/m² lmpact Resistance – Survives road debris impact 3. 2×107 Fatigue Cycles – Outlasts aluminum components 4. 85% Strength @130°C – Performs in hot zones 5. <0.3mm/m Warpage – Maintains precision in humidity
Learn More*280MPa Tensile – Rivals steel strength *90kJ/m² Impact – Survives brutal shocks *10⁷ Fatigue Cycles – Outlasts aluminum 5X *0.5% Creep@120°C – Holds shape under stress *1.32g/cm³ Density – 60% lighter than steel
Learn More1. 195°C Heat Resistance -Withstands extreme engine temperatures 2. 240MPa Tensile Strength-Carbon-fiber reinforced durability 3. 1.5% Moisture Absorption – Superior humidity resistance 4. 15GPa Flexural Modulus – Unmatched vibration resistance
Learn More1. High heat resistance – HDT up to 200°C 2. Superior tensile strength – 200–250 MPa 3. Low moisture absorption – <2% water uptake 4. Excellent stiffness – Flexural modulus 10–15 GPa
Learn MoreCarbon fiber typically consists of very fine strands of carbon atoms, usually bundled together to form larger fibers. These fibers are incredibly strong and stiff, making them ideal for reinforcing materials in various applications, from aerospace components to sports equipment.
The main advantage of long carbon fiber over traditional carbon fiber is its ability to distribute loads more effectively and resist deformation under stress. This makes long carbon fiber composites particularly well-suited for applications requiring high impact resistance and structural integrity, such as automotive parts, where they can replace metal components while offering significant weight savings.
Excellent quality, guaranteed reputation: We are well aware of the importance of quality, so we always adhere to strict quality control and inspection processes to ensure that our products and services meet the highest quality standards. Our reputation is widely recognized in the industry, which is the result of our continuous efforts.
Customer first, service first: We know that customer satisfaction is the key to our success. Therefore, we always adhere to the principle of customer first and aim to provide services that exceed customer expectations. Our service team is always oriented to customer needs and provides personalized solutions.
Carbon (Xiamen) New Material Co., Ltd. provides customers with a variety of choices. We have always maintained close and good cooperative relationships with our customers, which gives our product prices an advantage in the market and allows customers to benefit from them.
Carbon (Xiamen) New Material Co., Ltd. aims to provide buyers with "one-stop" worry-free high-quality services. Here you can find all information about carbon fiber engineering plastics. If you still have questions, please send us an email for consultation!
How can I contact the manufacturer of a product that interests me?
When you find a product you are interested in, you can contact the manufacturer directly by sending an email and we will get back to you as soon as possible.
How do I find the products that interest me?
All you need to do is enter the keyword, product name in the search window and press the Enter key on your keyboard. Your search results page will then be displayed. You can also search within the product category pages on the home page. Each category is divided into subcategories, allowing you to refine your search and find products that interest you.
Where will I find a buying guide?
Please contact our after-sales service directly and we will provide you with a comprehensive operating guide.
What are CF Reinforced Thermoplastic Composites?
CF Reinforced Thermoplastic Composites are materials where carbon fibers are incorporated into a thermoplastic matrix. They combine the strength and stiffness of carbon fibers with the processability and recyclability of thermoplastics. For instance, they are used in automotive parts like bumper beams.
What are the benefits of CF Reinforced Thermoplastic Composites over traditional composites?
The key benefits include faster production cycles, easier recyclability, and better impact resistance. They also offer design flexibility. An example is in the manufacturing of consumer electronics casings where complex shapes can be achieved more easily.
How are CF Reinforced Thermoplastic Composites processed?
Common processing methods include injection molding, extrusion, and compression molding. Injection molding is widely used for mass production. For example, in the production of small components for the medical industry.
What industries use CF Reinforced Thermoplastic Composites?
They are utilized in aerospace, automotive, medical, and sports equipment industries. In aerospace, they can be found in interior components. In the medical field, they might be used in prosthetics.
How does the carbon fiber content affect the properties of the composites?
Higher carbon fiber content generally leads to increased strength and stiffness but may reduce ductility. A moderate content is often balanced for specific applications. For example, a higher content might be preferred in structural parts of a race car.
What are the challenges in using CF Reinforced Thermoplastic Composites?
Challenges include higher material costs, complex processing equipment requirements, and ensuring uniform fiber dispersion. Issues with adhesion between the fibers and the matrix can also arise. An example is in achieving consistent quality in large-scale production.